
GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 1 of 9

Table of Contents

Introduction

Security Considerations in Application Design and Development

Secure Application Programming Practices

Application Security Testing

Application Change Control

Appendix A: Common Vulnerabilities in Web Applications

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 2 of 9

Introduction

To meet University needs, applications are often developed either in-house or outsourced
to vendors. It is important that proper design and programming practices are adopted to
keep the application systems secure to avoid any loss of data, especially confidential
materials.

This guide covers security considerations and actions to be taken at different application
development stages to mitigate the occurrence of common software vulnerabilities. While
the primary focus is on web applications and their supporting infrastructure, most of the
guidelines can be applied to general software deployment platform with which system
availability, reliability and confidentiality can be strengthened to an acceptable risk level.

Security Considerations in Application Design and Development

 Secure design

Security must be considered in application design and development. It is very difficult
to implement security measures properly and successfully after an application system
has been developed. It is of paramount importance to know the value of what is
being protected, the threats and vulnerabilities [Appendix A], and the consequence of being
compromised.

 Secure the weakest link

It is always easier for attackers to go against a weak spot in an application than parts
that look the strongest. Adopting proper security measures and having airtight code
throughout the application leaving no holes is required. Otherwise, the application
will just be as secure as the weakest link.

 Secure configuration

Applications should be designed to have the least system privileged processes and
accounts. Critical administrative functions need to be divided into sub-tasks and
assigned to individual administrators. Unnecessary and unused services, shares,
protocols and ports should be disabled to reduce the potential areas of attack. Server
must be configured to use SSL transmission for all type of data between the client and
server.

 Secure application platform

Server platforms may contain some redundant information (e.g. online manuals, help
databases, sample files and system defaults) which may cause the leakage of system
information to hackers. Such unused or seldom used information should be removed
from production servers to secure the application platforms.

 Secure sensitive data

Sensitive or personal data should be encrypted when stored in database and during

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 3 of 9

transmission. When sensitive information is being displayed, printed or used for
demonstration or testing, it should be masked wherever possible.

 Secure authorization

Authorization scheme are required for the granting of minimum access rights to
individual users for information retrieval/update. System documentation and listings of
applications shall be kept to the minimum access.

 Secure session protection

Web application relies on stateless http protocol with session control using cookies for
authentication purposes. Prevalent means should be adopted to protect session
authentication cookies, including:
o Encrypt the cookies before sending to server.
o Use SSL to send the cookies to server.
o Limit the cookies lifetime.

 Secure input validation

There is no single solution to how the input can be securely validated throughout an
application. Yet, some basic principles are:
o Never trust inputs safety
o Use consistent validation strategies
o Minimize errors by confined input data
o Sanitize input by encoding
o Ensure all validation failures results in input rejection.

 Secure error handling

Return meaningful message when errors are detected. Message contents should be
helpful to end users and/or support staff. But no sensitive data or internal system
details should be disclosed. Structured exception handling should be adopted to
prevent further code execution if application failure occurs.

 Secure public web services

Web services require stronger security than Web sites. Web services expose
functionality and/or data in an open standardized way which implies that they are more
vulnerable than those exposed in propriety ways. Measures include:
o Authorize web service clients the same way web applications authorize users
o Validate input before consuming it
o Ensure that output sent to client is encoded to be consumed as data and not as

scripts
o Apply encryption on sensitive data to be sent to the client to ensure integrity on data

exchanged
o Ensure attachments are scanned for virus before being saved
o Limiting message size to an appropriate size to reduce the risk of DoS (Denial of

Service) attacks.

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 4 of 9

 Secure deployment

Security of a web application depends on the security of the application infrastructure.
Deployment review should be conducted to assess the implementation of all application
security measures formulated.

Secure Application Programming Practices

Adopt the following practices to the possible extent:

 Input validation

o Never trust inputs safety:
 Assume all inputs are malicious notwithstanding from a trusted site.

o Consistent validation strategies:
 Validate all data before processing starts.
 Centralize the validation codes in shared libraries/modules.
 Validate inputs in both client and server sides and to be done in same logic.
 Data must be strongly typed, length checked.
 For numeric data, ranges must be checked and unsigned (unless required).
 For data codes, format or syntax should be checked.
 Reject known bad inputs, e.g. malicious script text:<script>, Javascript,

onLoad, etc.

o Minimize errors by confining input data:
 Specify proper character sets, such as UTF-8.
 Use Checkbox, Radio Button, List/Menu if possible.
 Encode/escape potentially hazardous characters, such as

“~!#$%^&*[]<>’\r\n”.

o Sanitize inputs by encoding:
 Inputs will be treated as literal text and thus non-executable.
 Do not pass the HTML parameters directly to system call or database query.

o Ensure all validation failures result in input rejection.

 Vulnerabilities of hidden parameters

o Unless the integrity of the HTTP headers is guaranteed, do not trust CGI
environment variables for security decisions as they can be spoofed by attackers.

o Must not pass CGI variables directly to database queries or service/system calls.

o CGI variables should not be revealed directly in web page responses.

o Hidden fields, cookies are easily manipulated by attackers, so security control
(e.g. cryptographic techniques) should be applied to ensure their trustfulness.

 Sanitized application responses

o Centralize the outbound encoding in shared libraries/modules.

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 5 of 9

o Use correct output encode value for the data being used; HTML character entities
(e.g. " for "), URL encodes (e.g. %22 for ").

o Outputs, returned codes, error returns from system calls, service calls should be
checked for actual calls being invoked.

o Sensitive or personal data should be masked in display, printout or being used for
demonstration or testing.

o Sensitive or personal data must not be included in HTTP GET request
parameters.

o Disable the auto complete feature on form field of sensitive data inputs.

o Do not include unnecessary application logic comments, system infrastructure
information such as internal IP address, internal host name and internal directory
structure.

 Error Handling and Logging

o Enforce error handler to be invoked when error is detected.

o Centralize the error handling codes in shared libraries/modules with generic
messages being implemented.

o Use custom error message page rather than default system message page.

o Error message should be meaningful to end user and/or support staff.

o Do not include sensitive information in error message (e.g. personal data, internal
server data, debug trace).

o Exception handling routine must prevent further code execution.

o Enable server side logging controls for failure events.

o Centralize the logging control in shared libraries/modules.

o No sensitive information should be revealed in the log, such as system details,
session ID, passwords.

o Access to logs should be restricted to authorized persons only.

 Session management

o Creation:
 Session ID must be created on a trusted server only.
 Where appropriate, make session ID long, complex, randomized and

untraceable.

o Lifetime:
 Lifetime should be bound closely to session/connection termination.
 Enforce a short session inactivity timeout.
 Establish a minimum session termination scheme while sufficient for normal

business activity to complete.

o Storage:
 Do not store session ID in hidden variables like hidden fields, HTTP headers,

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 6 of 9

URL, persistent cookies.
 Session ID stored in client browsers should be encrypted.

o Transmission:
 Use SSL to send the session ID to server.
 Encrypt the session ID before sending to server.

 Access Authorization

o Centralize the user access controls in shared libraries/modules for deriving access
authorization decisions.

o Access controls must be compelled on each request disregarding the request
sources (e.g. from client-side, server-side, from AJAX, or Flash).

o Restrictive functions should be provided for granting minimum access right to
individual users for information retrieval/updating.

o Account authorized to directly connect to backend database, or to run SQL, or to
run OS commands, must be limited to least execution privileges.

o Restrictive access should be applied to application program files, web server and
configuration files.

o Data files, backups, temporary outputs should be kept in different directories.

 Others

o Restrict the types of files to be uploaded to server, such as only gif, jpeg are allow
for images.

o Ensure uploaded files are scanned for virus before being saved.

Application Security Testing

Security testing involves the examination on the ability to mitigate vulnerabilities from the
security perspective.

 Data Security Testing

o Ascertain testing should include input of valid, invalid and combination of both
types of data.

o Ascertain data containing sensitive information (e.g. HKID, credit card number)
should be protected by masking or modification beyond recognition.

o Ascertain password and sensitive data are not stored in cookies.

o Ascertain session/cookie data are stored in encrypted formatted.

o Ascertain session/cookie data are removed/expired upon logout.

o Ascertain correct authorization data is used on all access-controlled pages.

o Ascertain no production data being used for testing. If this is unavoidable, prior

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 7 of 9

approval should be obtained. All these data must be cleared after testing.

 Page Security Testing

o Ascertain rules for authorization checking are implemented on all access-
controlled pages.

o Ascertain no access to secured web pages without login.

o Ascertain error messages should not display any sensitive or important information.

o Ascertain no internal system information, such as application, server, or database
information, should be exposed when system malfunction occurs.

o Ascertain crucial operations are written in log files in which tracking information
must be recorded.

Application Change Control

In order to maintain integrity of application and to reduce the exposure to fraud and errors,
the following change controls should be adopted:

 A proper procedure for requesting and approving application modification must be

established.

 Changes can only be proceeded after formal approval has been obtained.

 All changes must be tested and re-accessed to ensure that the application as a whole
can be effectively protected from attacks or from being compromised.

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 8 of 9

Appendix A: Common Vulnerabilities in Web Applications

Injection

Injection flaws, such as SQL, OS, and LDAP injection occur when
untrusted data is sent to an interpreter as part of a command or
query. The attacker’s hostile data can trick the interpreter into
executing unintended commands or accessing data without
proper authorization.

Broken Authentication
and Session
Management

Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, or session tokens, or
to exploit other implementation flaws to assume other users’
identities.

Cross-Site Scripting
(XSS)

XSS flaws occur whenever an application takes untrusted data
and sends it to a web browser without proper validation or
escaping. XSS allows attackers to execute scripts in the victim’s
browser which can hijack user sessions, deface web sites, or
redirect the user to malicious sites.

Insecure Direct Object
References

A direct object reference occurs when a developer exposes a
reference to an internal implementation object, such as a file,
directory, or database key. Without an access control check or
other protection, attackers can manipulate these references to
access unauthorized data.

Security Misconfiguration

Good security requires having a secure configuration defined and
deployed for the application, frameworks, application server, web
server, database server, and platform. Secure settings should be
defined, implemented, and maintained, as defaults are often
insecure. Additionally, software should be kept up to date.

Sensitive Data Exposure

Many web applications do not properly protect sensitive data,
such as credit cards, tax IDs, and authentication credentials.
Attackers may steal or modify such weakly protected data to
conduct credit card fraud, identity theft, or other crimes. Sensitive
data deserves extra protection such as encryption at rest or in
transit, as well as special precautions when exchanged with the
browser.

Missing Function Level
Access Control

Most web applications verify function level access rights before
making that functionality visible in the UI. However, applications
need to perform the same access control checks on the server
when each function is accessed. If requests are not verified,
attackers will be able to forge requests in order to access
functionality without proper authorization.

Cross-Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on victim’s browser to send a
forged HTTP request, including the victim’s session cookie and
any other automatically included authentication information, to a

https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A1-Injection
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A2-Broken_Authentication_and_Session_Management
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29
https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_%28XSS%29
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A4-Insecure_Direct_Object_References
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A5-Security_Misconfiguration
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A7-Missing_Function_Level_Access_Control
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29
https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29

GUIDELINES ON WEB APPLICATION SECURITY

Revised: 28 Jan 2016 by ISO

Page 9 of 9

vulnerable web application. This allows the attacker to force the
victim’s browser to generate requests the vulnerable application
thinks are legitimate requests from the victim.

Using Components with
Known Vulnerabilities

Components, such as libraries, frameworks, and other software
modules, almost always run with full privileges. If a vulnerable
component is exploited, such an attack can facilitate serious data
loss or server takeover. Applications using components with
known vulnerabilities may undermine application defenses and
enable a range of possible attacks and impacts.

Unvalidated Redirects
and Forwards

Web applications frequently redirect and forward users to other
pages and websites, and use untrusted data to determine the
destination pages. Without proper validation, attackers can
redirect victims to phishing or malware sites, or use forwards to
access unauthorized pages.

Information Source: https://www.owasp.org/index.php/Top_10_2013-Top_10

https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A9-Using_Components_with_Known_Vulnerabilities
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards

